Chapter 1
The Object-Oriented Method

Concepts: I Will pick up tf}e hook.
> Data structures You W}il'l see sonzlethlr;? I;Iew.
> Abstract data types Two things. And [call them
. Thing One and Thing Two.
> Objects . ! .
cl These Things will not bite you.
> asses They want to have fun.
> Interfaces

—Theodor Seuss Geisel

COMPUTER SCIENCE DOES NOT SUFFER the great history of many other disci-
plines. While other subjects have well-founded paradigms and methods, com-
puter science still struggles with one important question: What is the best method
to write programs? To date, we have no best answer. The focus of language de-
signers is to develop programming languages that are simple to use but provide
the power to accurately and efficiently describe the details of large programs
and applications. The development of Java is one such effort.

Throughout this text we focus on developing data structures using object-
oriented programming. Using this paradigm the programmer spends time devel-
oping templates for structures called classes. The templates are then used to
construct instances or objects. A majority of the statements in object-oriented
programs involve sending messages to objects to have them report or change
their state. Running a program involves, then, the construction and coordina-
tion of objects. In this way languages like Java are object-oriented.

In all but the smallest programming projects, abstraction is a useful tool
for writing working programs. In programming languages including Pascal,
Scheme, and C, the details of a program’s implementation are hidden away in
its procedures or functions. This approach involves procedural abstraction. In
object-oriented programming the details of the implementation of data struc-
tures are hidden away within its objects. This approach involves data abstrac-
tion. Many modern programming languages use object orientation to support
basic abstractions of data. We review the details of data abstraction and the
design of formal interfaces for objects in this chapter.

OOP:
Object-oriented
programming.

The Object-Oriented Method

Macintosh and
UNIX store
strings
differently.

1.1 Data Abstraction and Encapsulation

If you purchase a donut from Morningside Bakery in Pittsfield, Massachusetts,
you can identify it as a donut without knowing its ingredients. Donuts are
circular, breadlike, and sweet. The particular ingredients in a donut are of little
concern to you. Of course, Morningside is free to switch from one sweetener to
another, as long as the taste is preservedF_-] The donut’s ingredients list and its
construction are details that probably do not interest you.

Likewise, it is often unimportant to know how data structures are imple-
mented in order to appreciate their use. For example, most of us are familiar
with the workings or semantics of strings or arrays, but, if pressed, we might
find it difficult to describe their mechanics: Do all consecutive locations in the
array appear close together in memory in your computer, or are they far apart?
The answer is: it is unimportant. As long as the array behaves like an array or
the string behaves like a string we are happy. The less one knows about how
arrays or strings are implemented, the less one becomes dependent on a partic-
ular implementation. Another way to think about this abstractly is that the data
structure lives up to an implicit “contract”: a string is an ordered list of charac-
ters, or elements of an array may be accessed in any order. The implementor of
the data structure is free to construct it in any reasonable way, as long as all the
terms of the contract are met. Since different implementors are in the habit of
making very different implementation decisions, anything that helps to hide the
implementation details—any means of using abstraction—serves to make the
world a better place to program.

When used correctly, object-oriented programming allows the programmer
to separate the details that are important to the user from the details that are
only important to the implementation. Later in this book we shall consider very
general behavior of data structures; for example, in Section we will study
structures that allow the user only to remove the most recently added item.
Such behavior is inherent to our most abstract understanding of how the data
structure works. We can appreciate the unique behavior of this structure even
though we haven’t yet discussed how these structures might be implemented.
Those abstract details that are important to the user of the structure—including
abstract semantics of the methods—make up its contract or interface. The in-
terface describes the abstract behavior of the structure. Most of us would agree
that while strings and arrays are very similar structures, they behave differently:
you can shrink or expand a string, while you cannot directly do the same with
an array; you can print a string directly, while printing an array involves explic-
itly printing each of its elements. These distinctions suggest they have distinct
abstract behaviors; there are distinctions in the design of their interfaces.

The unimportant details hidden from the user are part of what makes up
the implementation. We might decide (see Figure that a string is to be

L Apple cider is often used to flavor donuts in New England, but that decision decidedly changes
the flavor of the donut for the better. Some of the best apple cider donuts can be found at Atkin’s
apple farm in Amherst, Massachusetts.

1.2 The Object Model

Counted string

paa [|clk[e[r]v] [s[elc]i]r[1] [Z] |

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 n

Count

Terminated string

paa [L|1]c[k|e[r[v] [s[rli]i]v]i[5]l] |

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 n

Figure 1.1 Two methods of implementing a string. A counted string explicitly records
its length. The terminated string’s length is determined by an end-of-string mark.

constructed from a large array of characters with an attendant character count.
Alternatively, we might specify the length implicitly by terminating the string
with a special end-of-string mark that is not used for any other purpose. Both
of these approaches are perfectly satisfactory, but there are trade-offs. The first
implementation (called a counted string) has its length stored explicitly, while
the length of the second implementation (called a terminated string) is implied.
It takes longer to determine the length of a terminated string because we have to
search for the end-of-string mark. On the other hand, the size of a terminated
string is limited only by the amount of available memory, while the longest
counted string is determined by the range of integers that can be stored in its
length field (often this is only several hundred characters). If implementors can
hide these details, users do not have to be distracted from their own important
design work. As applications mature, a fixed interface to underlying objects
allows alternative implementations of the object to be considered.

Data abstraction in languages like Java allows a structure to take responsibil-
ity for its own state. The structure knows how to maintain its own state without
bothering the programmer. For example, if two strings have to be concatenated
into a single string structure, a request might have to be made for a new allot-
ment of memory. Thankfully, because strings know how to perform operations
on themselves, the user doesn’t have to worry about managing memory.

1.2 The Object Model

To facilitate the construction of well-designed objects, it is useful to have a de-
sign method in mind. As alluded to earlier, we will often visualize the data for
our program as being managed by its objects. Each object manages its own data
that determine its state. A point on a screen, for example, has two coordinates.

The Object-Oriented Method

A medical record maintains a name, a list of dependents, a medical history, and
a reference to an insurance company. A strand of genetic material has a se-
quence of base pairs. To maintain a consistent state we imagine the program
manipulates the data within its objects only through messages or method calls
to the objects. A string might receive a message “tell me your length,” while
a medical record might receive a “change insurance” message. The string mes-
sage simply accesses information, while the medical record method may involve
changing several pieces of information in this and other objects in a consistent
manner. If we directly modify the reference to the insurance company, we may
forget to modify similar references in each of the dependents. For large applica-
tions with complex data structures, it can be extremely difficult to remember to
coordinate all the operations that are necessary to move a single complex object
from one consistent state to another. We opt, instead, to have the designer of
the data structure provide us a method for carefully moving between states; this
method is activated in response to a high-level message sent to the object.

This text, then, focuses on two important topics: (1) how we implement and
evaluate objects with methods that are logically complex and (2) how we might
use the objects we create. These objects typically represent data structures, our
primary interest. Occasionally we will develop control structures—structures
whose purpose is to control the manipulation of other objects. Control struc-
tures are an important concept and are described in detail in Chapter 8]

1.3 Object-Oriented Terminology

In Java, data abstraction is accomplished through encapsulation of data in an
object—an instance of a class. Like a record in other languages, an object has
fields. Unlike records, objects also contain methods. Fields and methods of an
object may be declared public, which means that they are visible to entities
outside the class, or protected, in which case they may only be accessed by
code within methods of the classE] A typical class declaration is demonstrated
by the following simple class that keeps track of the ratio of two integer values:

public class Ratio

protected int numerator; // numerator of ratio
protected int denominator; // denominator of ratio

public Ratio(int top, int bottom)
// pre: bottom != 0
// post: constructs a ratio equivalent to top::bottom
{
numerator = top;
denominator = bottom;
reduce() ;

2 This is not quite the truth. For a discussion of the facts, see Appendix

1.3 Object-Oriented Terminology

public int getNumerator ()
// post: return the numerator of the fraction
{

return numerator;

public int getDenominator ()
// post: return the denominator of the fraction
{

return denominator;

public double getValue()
// post: return the double equivalent of the ratio

{

return (double)numerator/(double)denominator;

public Ratio add(Ratio other)
// pre: other is nonnull
// post: return new fraction--the sum of this and other

{
return new Ratio(this.numerator*other.denominator+
this.denominator*other.numerator,
this.denominator*other.denominator);
}

protected void reduce()
// post: numerator and denominator are set so that
// the greatest common divisor of the numerator and denominator is 1

{
int divisor = gcd(numerator,denominator) ;
if (denominator < 0) divisor = -divisor;
numerator /= divisor;
denominator /= divisor;

}

protected static int gecd(int a, int b)
// post: computes the greatest integer value that divides a and b
{
if (a < 0) return gcd(-a,b);
if (a ==0) {
if (b == 0) return 1;
else return b;
}
if (b < a) return gcd(b,a);
return gcd(b%a,a);

10

The Object-Oriented Method

public String toString()
// post: returns a string that represents this fraction.
{
return getNumerator()+"/"+getDenominator() ;
}
}

First, a Ratio object maintains the numerator and denominator as protected
ints that are not directly modifiable by the user. The Ratio method is a con-
structor: a method whose name is the same as that of the class. (The formal
comments at the top of methods are pre- and postconditions; we discuss these
in detail in Chapter[2]) The constructor is called whenever a new Ratio object is
formed. Constructors initialize all the fields of the associated object, placing the
object into a predictable and consistent initial state. We declare the construc-
tors for a class public. To construct a new Ratio object, users will have to call
these methods. The value method returns a double that represents the ratio,
while the getNumerator and getDenominator methods fetch the current values
of the numerator and denominator of the fraction. The add method is useful for
adding one Ratio to another; the result is a newly constructed Ratio object.
Finally, the toString method generates the preferred printable representation
of the object; we have chosen to represent it in fractional form.

Two methods, reduce and ged, are utility methods. The gcd method com-
putes the greatest common divisor of two values using Euclid’s method, one of
the oldest numerical algorithms used today. It is used by the reduce method to
reduce the numerator and denominator to lowest terms by removing any com-
mon factors. Both are declared protected because computing the reduction is
not a necessary (or obvious) operation to be performed on ratios of integers;
it’s part of the implementation. The gcd method is declared static because
the algorithm can be used at any time—its utility is independent of the number
of Ratio objects that exist in our program. The reduce method, on the other
hand, works only with a Ratio object.

Exercise 1.1 Nearly everything can be improved. Are there improvements that
might be made to the gcd method? Can you write the method iteratively? Is
iteration an improvement?

As with the Ratio class, data fields are usually declared protected. To ma-
nipulate protected fields the user must invoke public methods. The following
example demonstrates the manipulation of the Ratio class:

public static void main(String[] args)

{
Ratio r = new Ratio(1,1); // r==1.0
r = new Ratio(1,2); // r == 0.5
r.add(new Ratio(1,3)); // sum computed, but r still 0.5
r = r.add(new Ratio(2,8)); // r == 0.75

System.out.println(r.getValue()); // 0.75 printed

1.4 A Special-Purpose Class: A Bank Account

11

System.out.println(r.toString()); // calls toString()
System.out.println(r); // calls toString()
}

To understand the merit of this technique of class design, we might draw an
analogy between a well-designed object and a lightbulb for your back porch.
The protected fields and methods of an object are analogous to the internal de-
sign of the bulb. The observable features, including the voltage and the size of
the socket, are provided without giving any details about the implementation
of the object. If light socket manufacturers depended on a particular imple-
mentation of lightbulbs—for example the socket only supported bright xenon
bulbs—it might ultimately restrict the variety of suppliers of lightbulbs in the
future. Likewise, manufacturers of lightbulbs should be able to have a cer-
tain freedom in their implementation: as long as they only draw current in an
agreed-upon way and as long as their bulb fits the socket, they should be free
to use whatever design they want. Today, most lamps take either incandescent
or fluorescent bulbs.

In the same way that fields are encapsulated by a class, classes may be encap-
sulated by a package. A package is a collection of related classes that implement
some set of structures with a common theme. The classes of this text, for ex-
ample, are members of the structure package. In the same way that there are
users of classes, there are users of packages, and much of the analogy holds. In
particular, classes may be declared public, in which case they may be used by
anyone who imports the package into their program. If a class is not public, it
is automatically considered protected. These protected classes may only be
constructed and used by other classes within the same package.

1.4 A Special-Purpose Class: A Bank Account

We now look at the detailed construction of a simplistic class: a BankAccount.
Many times, it is necessary to provide a tag associated with an instance of a
data structure. You might imagine that your bank balance is kept in a database
at your bank. When you get money for a trip through the Berkshires, you swipe
your card through an automated teller bringing up your account. Your account
number, presumably, is unique to your account. Nothing about you or your
banking history is actually stored in your account number. Instead, that num-
ber is used to find the record linked to your account: the bank searches for a
structure associated with the number you provide. Thus a BankAccount is a sim-
ple, but important, data structure. It has an account (an identifier that never
changes) and a balance (that potentially does change). The public methods of
such a structure are as follows:

public class BankAccount
{
public BankAccount(String acc, double bal)
// pre: account is a string identifying the bank account

Automated
teller: a robotic
palm reader.

BankAccount

12

The Object-Oriented Method

// balance is the starting balance
// post: constructs a bank account with desired balance

public boolean equals(Object other)
// pre: other is a valid bank account
// post: returns true if this bank account is the same as other

public String getAccount ()
// post: returns the bank account number of this account

public double getBalance()
// post: returns the balance of this bank account

public void deposit(double amount)
// post: deposit money in the bank account

public void withdraw(double amount)
// pre: there are sufficient funds in the account
// post: withdraw money from the bank account

}

The substance of these methods has purposefully been removed because, again,
it is unimportant for us to know exactly how a BankAccount is implemented.
We have ways to construct and compare BankAccounts, as well as ways to read
the account number or balance, or update the balance.

Let’s look at the implementation of these methods, individually. To build a
new bank account, you must use the new operator to call the constructor with
two parameters. The account number provided never changes over the life of
the BankAccount—if it were necessary to change the value of the account num-
ber, a new BankAccount would have to be made, and the balance would have to
be transferred from one to the other. The constructor plays the important role
of performing the one-time initialization of the account number field. Here is
the code for a BankAccount constructor:

protected String account; // the account number
protected double balance; // the balance associated with account

public BankAccount(String acc, double bal)
// pre: account is a string identifying the bank account
// balance is the starting balance
// post: constructs a bank account with desired balance
{

account = acc;
bal;

balance

}

Two fields—account and balance—of the BankAccount object are responsible
for maintaining the object’s state. The account keeps track of the account num-
ber, while the balance field maintains the balance.

1.4 A Special-Purpose Class: A Bank Account

13

Since account numbers are unique to BankAccounts, to check to see if two
accounts are “the same,” we need only compare the account fields. Here’s the
code:

public boolean equals(Object other)
// pre: other is a valid bank account
// post: returns true if this bank account is the same as other
{
BankAccount that = (BankAccount)other;
// two accounts are the same if account numbers are the same
return this.account.equals(that.account);

}

Notice that the BankAccount equals method calls the equals method of the key,
a String. Both BankAccount and String are nonprimitive types, or examples
of Objects. Every object in Java has an equals method. If you don’t explicitly
provide one, the system will write one for you. Generally speaking, one should
assume that the automatically written or default equals method is of little use.
This notion of “equality” of objects is often based on the complexities of our
abstraction; its design must be considered carefully.

One can ask the BankAccount about various aspects of its state by calling its
getAccount or getBalance methods:

public String getAccount ()
// post: returns the bank account number of this account

{

return account;

public double getBalance()
// post: returns the balance of this bank account
{

return balance;

}

These methods do little more than pass along the information found in the
account and balance fields, respectively. We call such methods accessors. In a
different implementation of the BankAccount, the balance would not have to be
explicitly stored—the value might be, for example, the difference between two
fields, deposits and drafts. Given the interface, it is not much of a concern to
the user which implementation is used.

We provide two more methods, deposit and withdraw, that explicitly mod-
ify the current balance. These are mutator methods:

public void deposit(double amount)
// post: deposit money in the bank account

{

balance = balance + amount;

14

The Object-Oriented Method

At least Dr.
Seuss started
with 50 words!

public void withdraw(double amount)
// pre: there are sufficient funds in the account
// post: withdraw money from the bank account

{

balance = balance - amount;

}

Because we would like to change the balance of the account, it is important to
have a method that allows us to modify it. On the other hand, we purposefully
don’t have a setAccount method because we do not want the account number
to be changed without a considerable amount of work (work that, by the way,

models reality).

Here is a simple application that determines whether it is better to deposit
$100 in an account that bears 5 percent interest for 10 years, or to deposit $100
in an account that bears 21 percent interest for 20 years. It makes use of the
BankAccount object just outlined:

public static void main(String[] args)

{

// Question: is it better to invest $100 over 10 years at 5%

/7

or to invest $100 over 20 years at 2.5/, interest?

BankAccount jd = new BankAccount("Jain Dough",100.00) ;
BankAccount js = new BankAccount("Jon Smythe",100.00);

for (int years = 0; years < 10; years++)

{

jd.

}

deposit(jd.getBalance() * 0.05);

for (int years = 0; years < 20; years++)

{

js.

}

System.
System.

System.
.out.println("After 20 years " + js.getAccount() +

System

}

deposit(js.getBalance() * 0.025);

out.println("Jain invests $100 over 10 years at 5%.");
out.println("After 10 years " + jd.getAccount() +

" has $" + jd.getBalance());
out.println("Jon invests $100 over 20 years at 2.5%.");

" has $" + js.getBalance());

Exercise 1.2 Which method of investment would you pick?

1.5 A General-Purpose Class: An Association

The following small application implements a Pig Latin translator based on a
dictionary of nine words. The code makes use of an array of Associations,
each of which establishes a relation between an English word and its Pig Latin

1.5 A General-Purpose Class: An Association

15

translation. For each string passed as the argument to the main method, the
dictionary is searched to determine the appropriate translation.

public class atinLay {
// a pig latin translator for nine words
public static void main(String args[])

{

// build and fill out an array of nine translations

Association dict[] = new Association[9];

dict[0] = new Association("a","aay");

dict[1] = new Association("bad","adbay");

dict[2] = new Association("had","adhay");

dict[3] = new Association("dad","adday");

dict[4] = new Association("day","ayday");

dict[5] = new Association("hop","ophay");

dict[6] = new Association("on","onay");

dict[7] = new Association("pop","oppay");

dict[8] = new Association("sad","adsay");

for (int argn = 0; argn < args.length; argn++)

{ // for each argument
for (int dictn = 0; dictn < dict.length; dictn++)
{ // check each dictionary entry

if (dict[dictn].getKey().equals(args[argn]))
System.out.println(dict[dictn].getValue());

}

}

}

}
When this application is run with the arguments hop on pop, the results are

ophay
onay
oppay

While this application may seem rather trivial, it is easy to imagine a large-scale
application with similar needsF]

We now consider the design of the Association. Notice that while the type
of data maintained is different, the purpose of the Association is very similar
to that of the BankAccount class we discussed in Section An Association
is a key-value pair such that the key cannot be modified. Here is the interface
for the Association class:

import java.util.Map;

3 Pig Latin has played an important role in undermining court-ordered restrictions placed on music
piracy. When Napster—the rebel music trading firm—put in checks to recognize copyrighted music
by title, traders used Pig Latin translators to foil the recognition software!

atinlay

Association

16

The Object-Oriented Method

public class Association implements Map.Entry

{
public Association(Object key, Object value)
// pre: key is non-null
// post: constructs a key-value pair
public Association(Object key)
// pre: key is non-null
// post: constructs a key-value pair; value is null
public boolean equals(Object other)
// pre: other is non-null Association
// post: returns true iff the keys are equal
public Object getValue()
// post: returns value from association
public Object getKey()
// post: returns key from association
public Object setValue(Object value)
// post: sets association’s value to value
}

For the moment, we will ignore the references to Map and Map. entry; these will
be explained later, in Chapter [I5] What distinguishes an Association from a
more specialized class, like BankAccount, is that the fields of an Association
are type Object. The use of the word Object in the definition of an Association
makes the definition very general: any value that is of type Object—any non-
primitive data type in Java—can be used for the key and value fields.

Unlike the BankAccount class, this class has two different constructors:

protected Object theKey; // the key of the key-value pair
protected Object theValue; // the value of the key-value pair

public Association(Object key, Object value)
// pre: key is non-null
// post: constructs a key-value pair

{
Assert.pre(key != null, "Key must not be null.");
theKey = key;
theValue = value;

}

public Association(Object key)
// pre: key is non-null
// post: constructs a key-value pair; value is null
{
this(key,null);

1.5 A General-Purpose Class: An Association

17

The first constructor—the constructor distinguished by having two parame-
ters—allows the user to construct a new Association by initializing both fields.
On occasion, however, we may wish to have an Association whose key field is
set, but whose value field is left referencing nothing. (An example might be a
medical record: initially the medical history is incomplete, perhaps waiting to
be forwarded from a previous physician.) For this purpose, we provide a sin-
gle parameter constructor that sets the value field to null. Note that we use
this(key,null) as the body. The one-parameter constructor calls this object’s
two-parameter constructor with null as the second parameter. We write the
constructors in this dependent manner so that if the underlying implementation
of the Association had to be changed, only the two-parameter method would
have to be updated. It also reduces the complexity of the code and saves your
fingerprints!

Now, given a particular Association, it is useful to be able to retrieve the
key or value. Since the implementation is hidden, no one outside the class is
able to see it. Users must depend on the accessor methods to observe the data.

public Object getValue()
// post: returns value from association
{

return theValue;

public Object getKey()
// post: returns key from association
{

return theKey;

}

When necessary, the method setValue can be used to change the value associ-
ated with the key. Thus, the setValue method simply takes its parameter and
assigns it to the value field:

public Object setValue(Object value)
// post: sets association’s value to value

{
Object oldValue = theValue;
theValue = value;
return oldValue;

}

There are other methods that are made available to users of the Association
class, but we will not discuss the details of that code until later. Some of the
methods are required, some are useful, and some are just nice to have around.
While the code may look complicated, we take the time to implement it cor-
rectly, so that we will not have to reimplement it in the future.

Principle 2 Free the future: reuse code.

18

The Object-Oriented Method

It is difficult to fight the temptation to design data structures from scratch. We
shall see, however, that many of the more complex structures would be very
difficult to construct if we could not base our implementations on the results of
previous work.

1.6 Sketching an Example: A Word List

Suppose we're interested in building a game of Hangman. The computer selects
random words and we try to guess them. Over several games, the computer
should pick a variety of words and, as each word is used, it should be removed
from the word list. Using an object-oriented approach, we’ll determine the
essential features of a WordList, the Java object that maintains our list of words.

Our approach to designing the data structures has the following five informal
steps:

1. Identify the types of operations you expect to perform on your object.
What operations access your object only by reading its data? What opera-
tions might modify or mutate your objects?

2. Identify, given your operations, those data that support the state of your
object. Information about an object’s state is carried within the object
between operations that modify the state. Since there may be many ways
to encode the state of your object, your description of the state may be
very general.

3. Identify any rules of consistency. In the Ratio class, for example, it would
not be good to have a zero denominator. Also, the numerator and denom-
inator should be in lowest terms.

4. Determine the number and form of the constructors. Constructors are
synthetic: their sole responsibility is to get a new object into a good initial
and consistent state. Don’t forget to consider the best state for an object
constructed using the parameterless default constructor.

5. Identify the types and kinds of information that, though declared pro-
tected, can efficiently provide the information needed by the public
methods. Important choices about the internals of a data structure are
usually made at this time. Sometimes, competing approaches are devel-
oped until a comparative evaluation can be made. That is the subject of
much of this book.

The operations necessary to support a list of words can be sketched out
easily, even if we don’t know the intimate details of constructing the Hangman
game itself. Once we see how the data structure is used, we have a handle on
the design of the interface. Thinking about the overall design of Hangman, we
can identify the following general use of the WordList object:

1.6 Sketching an Example: A Word List

19

WordList list; // declaration
String targetWord;

list = new WordList (10); // construction
list.add("disambiguate"); // is this a word? how about ambiguate?
list.add("inputted"); // really? what verbification!
list.add("subbookkeeper"); // now that’s coollooking!
while (!list.isEmpty()) // game loop
{

targetWord = list.selectAny(); // selection

// ...play the game using target word...

list.remove (targetWord) ; // update
}

Let’s consider these lines. One of the first lines (labeled declaration) de-
clares a reference to a WordList. For a reference to refer to an object, the object
must be constructed. We require, therefore, a constructor for a WordList. The
construction line allocates an initially empty list of words ultimately contain-
ing as many as 10 words. We provide an upper limit on the number of words
that are potentially stored in the list. (We’ll see later that providing such infor-
mation can be useful in designing efficient data structures.) On the next three
lines, three (dubious) words are added to the list.

The while loop accomplishes the task of playing Hangman with the user.
This is possible as long as the list of words is not empty. We use the isEmpty
method to test this fact. At the beginning of each round of Hangman, a random
word is selected (selectAny), setting the targetWord reference. To make things
interesting, we presume that the selectAny method selects a random word each
time. Once the round is finished, we use the remove method to remove the word
from the word list, eliminating it as a choice in future rounds.

There are insights here. First, we have said very little about the Hangman
game other than its interaction with our rather abstract list of words. The details
of the screen’s appearance, for example, do not play much of a role in under-
standing how the WordList structure works. We knew that a list was necessary
for our program, and we considered the program from the point of view of the
object. Second, we don’t really know how the WordList is implemented. The
words may be stored in an array, or in a file on disk, or they may use some tech-
nology that we don’t currently understand. It is only important that we have
faith that the structure can be implemented. We have sketched out the method
headers, or signatures, of the WordList interface, and we have faith that an im-
plementation supporting the interface can be built. Finally we note that what
we have written is not a complete program. Still, from the viewpoint of the
WordList structure, there are few details of the interface that are in question.
A reasoned individual should be able to look at this design and say “this will
work—provided it is implemented correctly.” If a reviewer of the code were to
ask a question about how the structure works, it would lead to a refinement of
our understanding of the interface.

We have, then, the following required interface for the WordList class:

WordList

20

The Object-Oriented Method

public class WordList

{
public WordList (int size)
// pre: size >= 0
// post: construct a word list capable of holding "size" words
public boolean isEmpty ()
// post: return true iff the word list contains no words
public void add(String s)
// post: add a word to the word list, if it is not already there
public String selectAny()
// pre: the word list is not empty
// post: return a random word from the list
public void remove(String word)
// pre: word is not null
// post: remove the word from the word list
}

We will leave the implementation details of this example until later. You might
consider various ways that the WordList might be implemented. As long as
the methods of the interface can be supported by your data structure, your
implementation is valid.

Exercise 1.3 Finish the sketch of the WordList class to include details about the
state variables.

1.7 Sketching an Example: A Rectangle Class

Suppose we are developing a graphics system that allows the programmer to
draw on a DrawingWindow. This window has, associated with it, a Cartesian
coordinate system that allows us to uniquely address each of the points within
the window. Suppose, also, that we have methods for drawing line segments,
say, using the Line object. How might we implement a rectangle—called a
Rect—to be drawn in the drawing window?

One obvious goal would be to draw a Rect on the DrawingWindow. This
might be accomplished by drawing four line segments. It would be useful to
be able to draw a filled rectangle, or to erase a rectangle (think: draw a filled
rectangle in the background color). We’re not sure how to do this efficiently, but
these latter methods seem plausible and consistent with the notion of drawing.
(We should check to see if it is possible to draw in the background color.) This
leads to the following methods:

public void fillOn(DrawingTarget d)
// pre: d is a valid drawing window
// post: the rectangle is filled on the drawing window d

1.7 Sketching an Example: A Rectangle Class

public void clearOn(DrawingTarget d)
// pre: d is a valid drawing window
// post: the rectangle is erased from the drawing window

public void drawOn(DrawingTarget d)
// pre: d is a valid drawing window
// post: the rectangle is drawn on the drawing window

It might be useful to provide some methods to allow us to perform basic calcu-
lations—for example, we might want to find out if the mouse arrow is located
within the Rect. These require accessors for all the obvious data. In the hope
that we might use a Rect multiple times in multiple locations, we also provide
methods for moving and reshaping the Rect.

public boolean contains(Pt p)
// pre: p is a valid point
// post: true iff p is within the rectangle

public int left()
// post: returns left coordinate of the rectangle

public void left(int x)
// post: sets left to x; dimensions remain unchanged

public int width()
// post: returns the width of the rectangle

public void width(int w)
// post: sets width of rectangle, center and height unchanged

public void center (Pt p)
// post: sets center of rect to p; dimensions remain unchanged

public void move(int dx, int dy)
// post: moves rectangle to left by dx and down by dy

public void moveTo(int left, int top)
// post: moves left top of rectangle to (left,top);
// dimensions are unchanged

public void extend(int dx, int dy)
// post: moves sides of rectangle outward by dx and dy

Again, other approaches might be equally valid. No matter how we might rep-
resent a Rect, however, it seems that all rectangular regions with horizontal
and vertical sides can be specified with four integers. We can, then, construct a
Rect by specifying, say, the left and top coordinates and the width and height.
For consistency’s sake, it seems appropriate to allow rectangles to be drawn
anywhere (even off the screen), but the width and height should be non-negative

22

The Object-Oriented Method

Structure

values. We should make sure that these constraints appear in the documenta-
tion associated with the appropriate constructors and methods. (See Section[2.2]
for more details on how to write these comments.)

Given our thinking, we have some obvious Rect constructors:

public Rect()
// post: constructs a trivial rectangle at origin

public Rect(Pt pl, Pt p2)
// post: constructs a rectangle between pl and p2

public Rect(int x, int y, int w, int h)

// pre: w >= 0, h >= 0

// post: constructs a rectangle with upper left (x,y),
// width w, height h

We should feel pleased with the progress we have made. We have developed
the signatures for the rectangle interface, even though we have no immediate
application. We also have some emerging answers on approaches to implement-
ing the Rect internally. If we declare our Rect data protected, we can insulate
ourselves from changes suggested by inefficiencies we may yet discover.

Exercise 1.4 Given this sketch of the Rect interface, how would you declare the
private data associated with the Rect object? Given your approach, describe how
you might implement the center (int x, int y) method.

1.8 Interfaces

Sometimes it is useful to describe the interface for a number of different classes,
without committing to an implementation. For example, in later sections of this
text we will implement a number of data structures that are able to be modified
by adding or removing values. We can, for all of these classes, specify a few of
their fundamental methods by using the Java interface declaration:

public interface Structure
{
public int size();
// post: computes number of elements contained in structure

public boolean isEmpty();
// post: return true iff the structure is empty

public void clear();
// post: the structure is empty

public boolean contains(Object value);
// pre: value is non-null
// post: returns true iff value.equals some value in structure

1.8 Interfaces

23

}

public void add(Object value);

// pre: value is non-null

// post: value has been added to the structure
// replacement policy is not specified

public Object remove(Object value);
// pre: value is non-null
// post: an object equal to value is removed and returned, if found

public java.util.Enumeration elements();

// post: returns an enumeration for traversing structure;
// all structure package implementations return

// an AbstractIterator

public Iterator iterator();

// post: returns an iterator for traversing structure;
// all structure package implementations return
// an AbstractIterator

public Collection values();
// post: returns a Collection that may be used with
// Java’s Collection Framework

Notice that the body of each method has been replaced by a semicolon. It
is, in fact, illegal to specify any code in a Java interface. Specifying just the
method signatures in an interface is like writing boilerplate for a contract with-
out committing to any implementation. When we decide that we are interested
in constructing a new class, we can choose to have it implement the Structure
interface. For example, our WordList structure of Section [I.6| might have made
use of our Structure interface by beginning its declaration as follows:

public class WordList implements Structure

When the WordList class is compiled by the Java compiler, it checks to see that

each of the methods mentioned in the Structure interface—add, remove, size, WordList
and the others—is actually implemented. In this case, only isEmpty is part of
the WordList specification, so we must either (1) not have WordList implement
the Structure interface or (2) add the methods demanded by Structure.
Interfaces may be extended. Here, we have a possible definition of what it
means to be a Set:

public interface Set extends Structure

{

public void addAll(Structure other);
// pre: other is non-null Set
// post: values from other are added into this set

24

The Object-Oriented Method

public boolean containsAll(Structure other);
// pre: other is non-null
// post: returns true if every value in set is in other

public void removeAll(Structure other);
// pre: other is non-null
// post: values of this set contained in other are removed

public void retainAll(Structure other);
// pre: other is non-null
// post: values not appearing in the other structure are removed

A Set requires several set-manipulation methods—addA11 (i.e., set union) retain-

A1l (set intersection), and removeAll (set difference)—as well as the meth-
ods demanded by being a Structure. If we implement these methods for the
WordList class and indicate that WordList implements Set, the WordList class
could be used wherever either a Structure or Set is required. Currently, our
WordList is close to, but not quite, a Structure. Applications that demand
the functionality of a Structure will not be satisfied with a WordList. Having
the class implement an interface increases the flexibility of its use. Still, it may
require considerable work for us to upgrade the WordList class to the level of
a Structure. It may even work against the design of the WordList to provide
the missing methods. The choices we make are part of an ongoing design pro-
cess that attempts to provide the best implementations of structures to meet the
demands of the user.

1.9 Who Is the User?

When implementing data structures using classes and interfaces, it is sometimes
hard to understand why we might be interested in hiding the implementation.
After all, perhaps we know that ultimately we will be the only programmers
making use of these structures. That might be a good point, except that if
you are really a successful programmer, you will implement the data structure
flawlessly this week, use it next week, and not return to look at the code for
a long time. When you do return, your view is effectively that of a user of the
code, with little or no memory of the implementation.

One side effect of this relationship is that we have all been reminded of the
need to write comments. If you do not write comments, you will not be able to
read the code. If, however, you design, document, and implement your interface
carefully, you might not ever have to look at the implementation! That’s good
news because, for most of us, in a couple of months our code is as foreign to
us as if someone else had implemented it. The end result: consider yourself a
user and design and abide by your interface wherever possible. If you know of
some public field that gives a hint of the implementation, do not make use of it.
Instead, access the data through appropriate methods. You will be happy you

1.10 Conclusions

did later, when you optimize your implementation.

Principle 3 Design and abide by interfaces as though you were the user.
A quick corollary to this statement is the following:

Principle 4 Declare data fields protected.

If the data are protected, you cannot access them from outside the class, and
you are forced to abide by the restricted access of the interface.

1.10 Conclusions

The construction of substantial applications involves the development of com-
plex and interacting structures. In object-oriented languages, we think of these
structures as objects that communicate through the passing of messages or,
more formally, the invocation of methods.

We use object orientation in Java to write the structures found in this book.
It is possible, of course, to design data structures without object orientation, but
any effective data structuring model ultimately depends on the use of some form
of abstraction that allows the programmer to avoid considering the complexities
of particular implementations.

In many languages, including Java, data abstraction is supported by sepa-
rating the interface from the implementation of the data structure. To ensure
that users cannot get past the interface to manipulate the structure in an uncon-
trolled fashion, the system controls access to fields, methods, and classes. The
implementor plays an important role in making sure that the structure is usable,
given the interface. This role is so important that we think of implementation
as supporting the interface—sometimes usefully considered a contract between
the implementor and the user. This analogy is useful because, as in the real
world, if contracts are violated, someone gets upset!

Initial design of the interfaces for data structures arises from considering
how they are used in simple applications. Those method calls that are required
by the application determine the interface for the new structure and constrain,
in various ways, the choices we make in implementing the object.

In our implementation of an Association, we can use the Object class—
that class inherited by all other Java classes—to write very general data struc-
tures. The actual type of value that is stored in the Association is determined
by the values passed to the constructors and mutators of the class. This abil-
ity to pass a subtype to any object that requires a super type is a strength of
object-oriented languages—and helps to reduce the complexity of code.

26

The Object-Oriented Method

Self Check Problems

Solutions to these problems begin on page 441

1.1 What is meant by abstraction?

1.2 What is procedural abstraction?

1.3 What is data abstraction?

1.4 How does Java support the concept of a message?

1.5 What is the difference between an object and a class?

1.6 What makes up a method’s signature?

1.7 What is the difference between an interface and an implementation?
1.8 What is the difference between an accessor and a mutator?

1.9 A general purpose class, such as an Association, often makes use of
parameters of type Object. Why?

1.10 What is the difference between a reference and an object?
1.11 Who uses a class?

Problems

Solutions to the odd-numbered problems begin on page

1.1 Which of the following are primitive Java types: int, Integer, double,
Double, String, char, Association, BankAccount, boolean, Boolean?

1.2 Which of the following variables are associated with valid constructor
calls?

BankAccount a,b,c,d,e,f;

Association g,h;

= new BankAccount ("Bob",300.0);

= new BankAccount(300.0,"Bob");

= new BankAccount (033414,300.0);

= new BankAccount ("Bob",300);

new BankAccount ("Bob",new Double(300));

= new BankAccount ("Bob", (double)300) ;

= new Association("Alice",300.0);

= new Association("Alice",new Double(300));

50 O Q&0 O e
Il

1.3 For each pair of classes, indicate which class extends the other:
a. java.lang.Number, java.lang.Double
b. java.lang.Number, java.lang.Integer
c. java.lang.Number, java.lang.0bject

d. java.util.Stack, java.util.Vector

1.10 Conclusions

27

€. java.util.Hashtable, java.util.Dictionary

1.4 Rewrite the compound interest program (discussed when considering
BankAccounts in Section|1.4) so that it uses Associations.

1.5 Write a program that attempts to modify one of the private fields of
an Association. When does your environment detect the violation? What
happens?

1.6 Finish the design of a Ratio class that implements a ratio between
two integers. The class should support standard math operations: addition,
subtraction, multiplication, and division. You should also be able to construct
Ratios from either a numerator-denominator pair, or a single integer, or with
no parameter at all (what is a reasonable default value?).

1.7 Amazing fact: If you construct a Ratio from two random integers, 0 <
a,b, the probability that ¢ is already in reduced terms is -%. Use this fact to
write a program to compute an approximation to 7.

1.8 Design a class to represent a U.S. telephone number. It should sup-
port three types of constructors—one that accepts three numbers, represent-
ing area code, exchange, and extension; another that accepts two integers,
representing a number within your local area code; and a third constructor
that accepts a string of letters and numbers that represent the number (e.g.,
"900-410-TIME"). Provide a method that determines if the number is provided
toll-free (such numbers have area codes of 800, 866, 877, 880, 881, 882, or
888).

1.9 Sometimes it is useful to measure the length of time it takes for a piece
of code to run. (For example, it may help determine where optimizations of
your code would be most effective.) Design a Stopwatch class to support tim-
ing of events. You should consider use of the nanosecond clock in the Java
environment, System.nanoTime(). Like many stopwatches, it should support
starting, temporary stopping, and a reset. The design of the protected section
of the stopwatch should hide the implementation details.

1.10 Design a data structure in Java that represents a musical tone. A tone
can be completely specified as a number of cycles per second (labeled Hz for
hertz), or the number of half steps above a commonly agreed upon tone, such
as A (in modern times, in the United States, considered to be 440 Hz). Higher
tones have higher frequencies. Two tones are an octave (12 semitones) apart
if one has a frequency twice the other. A half step or semitone increase in tone
is ¥/2 ~ 1.06 times higher. Your tone constructors should accept a frequency
(a double) or a number of half steps (an int) above A. Imperfect frequencies
should be tuned to the nearest half step. Once constructed, a tone should be
able to provide its frequency in either cycles per second or half-steps above A.

1.11 Extend Problem to allow a second parameter to each constructor
to specify the definition of A upon which the tone’s definition is based. What
modern tone most closely resembles that of modern middle C (9 semitones
below A) if A is defined to be 415 Hz?

28

The Object-Oriented Method

1.12 Design a data structure to represent a combination lock. When the
lock is constructed, it is provided with an arbitrary length array of integers
between 0 and 25 specifying a combination (if no combination is provided,
9 — 0 — 21 — 0 is the default). Initially, it is locked. Two methods—press
and reset—provide a means of entering a combination: press enters the next
integer to be used toward matching the combination, while reset re-readies
the lock for accepting the first integer of the combination. Only when press is
used to match the last integer of the combination does the lock silently unlock.
Mismatched integers require a call to the reset method before the combination
can again be entered. The isLocked method returns true if and only if the lock
is locked. The 1lock method locks and resets the lock. In the unlocked state only
the isLocked and lock methods have effect. (Aside: Because of the physical
construction of many combination locks, it is often the case that combinations
have patterns. For example, a certain popular lock is constructed with a three-
number combination. The first and last numbers result in the same remainder x
when divided by 4. The middle number has remainder (z + 2)%4 when divided
by 4!)

1.13 Design a data structure to simulate the workings of a car radio. The
state of the radio is on or off, and it may be used to listen to an AM or FM
station. A dozen modifiable push buttons (identified by integers 1 through 12)
allow the listener to store and recall AM or FM frequencies. AM frequencies can
be represented by multiples of 10 in the range 530 to 1610. FM frequencies are
found at multiples of 0.2 in the range 87.9 to 107.9.

1.14 Design a data structure to maintain the position of m coins of radius 1
through m on a board with n > m squares numbered 0 through n — 1. You may
provide whatever interface you find useful to allow your structure to represent
any placement of coins, including stacks of coins in a single cell. A configuration
is valid only if large coins are not stacked on small coins. Your structure should
have an isValid method that returns true if the coins are in a valid position.
(A problem related to this is discussed in Section[10.2.1})

- ®el @

[ﬁr‘zj | —

Sideview ‘

1.11 Laboratory: The Day of the Week
Calculator

Objective. To (re)establish ties with Java: to write a program that reminds us
of the particulars of numeric calculations and array manipulation in Java.

Discussion. In this lab we learn to compute the day of the week for any date
between January 1, 1900, and December 31, 2099E] During this period of time,
the only calendar adjustment is a leap-year correction every 4 years. (Years
divisible by 100 are normally not leap years, but years divisible by 400 always
are.) Knowing this, the method essentially computes the number of days since
the beginning of the twentieth century in modulo 7 arithmetic. The computed
remainder tells us the day of the week, where 0 is Saturday.

An essential feature of this algorithm involves remembering a short table of
monthly adjustments. Each entry in the table corresponds to a month, where
January is month 1 and December is month 12.

Month 112(3[4(5|6|7|8[9]10| 11|12
Adjustment | 1 |4 |4|0|2|5|/0|3|6| 1| 4| 6

If the year is divisible by 4 (it’s a leap year) and the date is January or February,
you must subtract 1 from the adjustment.

Remembering this table is equivalent to remembering how many days are in
each month. Notice that 144 is 122, 025 is 52, 036 is 62, and 146 is a bit more
than 122. Given this, the algorithm is fairly simple:

1. Write down the date numerically. The date consists of a month between
1 and 12, a day of the month between 1 and 31, and the number of
years since 1900. Grace Hopper, computer language pioneer, was born
December 9, 1906. That would be represented as year 6. Jana the Giraffe,
of the National Zoo, was born on January 18, 2001. That year would be
represented as year 101.

2. Compute the sum of the following quantities:

e the month adjustment from the given table (e.g., 6 for Admiral Hop-
per)
e the day of the month

e the year

4 This particular technique is due to John Conway, of Princeton University. Professor Conway
answers 10 day of the week problems before gaining access to his computer. His record is at the
time of this writing well under 15 seconds for 10 correctly answered questions. See “Scientist
at Work: John H. Conway; At Home in the Elusive World of Mathematics,” The New York Times,
October 12, 1993.

30 The Object-Oriented Method

e the whole number of times 4 divides the year (e.g., 25 for Jana the
Giraffe)

3. Compute the remainder of the sum of step 2, when divided by 7. The
remainder gives the day of the week, where Saturday is 0, Sunday is 1, etc.
Notice that we can compute the remainders before we compute the sum.
You may also have to compute the remainder after the sum as well, but if
you're doing this in your head, this considerably simplifies the arithmetic.

What day of the week was Tiger Woods born?
1. Tiger’s birth date is 12-30-75.
2. Remembering that 18 x 4 = 72, we write the sum as follows:
6+ 30+ 75+ 18
which is equivalent to the following sum, modulo 7:

6+24+5+4=17=3mod 7

3. He was born on day 3, a Tuesday.

Now you practice: Which of Grace and Jana was born on a Thursday? (The
other was born on a Sunday.)

Procedure. Write a Java program that performs Conway’s day of the week chal-
lenge:

1. Develop an object that can hold a date.

2. Write a method to compute a random date between 1900 and 2099. How
will you limit the range of days potentially generated for any particular
month?

3. Write a method of your date class to compute the day of the week associ-
ated with a date. Be careful: the table given in the discussion has January
as month 1, but Java would prefer it to be month 0! Don’t forget to handle

Jimmy was a the birthday of Jimmy Dorsey (famous jazzman), February 29, 1904.

Monday’s child.)
4. Your main method should repeatedly (1) print a random date, (2) read a

predicted day of the week (as an integer/remainder), and (3) check the
correctness of the guess. The program should stop when 10 dates have
been guessed correctly and print the elapsed time. (You may wish to set
this threshold lower while you’re testing the program.)

Helpful Hints. You may find the following Java useful:

1. Random integers may be selected using the java.util.Random class:

Random r = new Random() ;
int month = (Math.abs(r.nextInt()) % 12) + 1;

1.11 Laboratory: The Day of the Week Calculator

31

You will need to import java.util.Random; at the top of your program
to make use of this class. Be aware that you need to only construct one
random number generator per program run. Also, the random number
generator potentially returns negative numbers. If Math.abs is not used,
these values generate negative remainders.

2. You can find out how many thousandths of seconds have elapsed since
the 1960s, by calling the Java method, System. currentTimeMillis(). It
returns a value of type long. We can use this to measure the duration of
an experiment, with code similar to the following:

long start = System.currentTimeMillis();
//

// place experiment to be timed here

//

long duration = System.currentTimeMillis()-start;
System.out.println("time: "+(duration/1000.0)+" seconds.");

The granularity of this timer isn’t any better than a thousandth of a second.
Still, we’re probably not in Conway’s league yet.

After you finish your program, you will find you can quickly learn to answer
10 of these day of the week challenges in less than a minute.

Thought Questions. Consider the following questions as you complete the lab:
1. True or not: In Java is it true that (a % 7) == (a - a/7*7) fora >= 0?

2. It’s rough to start a week on Saturday. What adjustments would be nec-
essary to have a remainder of O associated with Sunday? (This might
allow a mnemonic of Nun-day, One-day, Twos-day, Wednesday, Fours-day,
Fives-day, Saturday.)

3. Why do you subtract 1 in a leap year if the date falls before March?

4. It might be useful to compute the portion of any calculation associated
with this year, modulo 7. Remembering that value will allow you to opti-
mize your most frequent date calculations. What is the remainder associ-
ated with this year?

Notes:

In 2001,

1 trillion millis
since the ’60s.
Dig that!

For years
divisible by 28:
think zero!

